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Abstract

Out-of-sample forecasting tests of DSGE models against time-series

benchmarks such as an unrestricted VAR are increasingly used to check a)

the specification b) the forecasting capacity of these models. We carry out

a Monte Carlo experiment on a widely-used DSGE model to investigate

the power of these tests. We find that in specification testing they have

weak power relative to an in-sample indirect inference test; this implies

that a DSGE model may be badly mis-specified and still improve forecasts

from an unrestricted VAR. In testing forecasting capacity they also have

quite weak power, particularly on the lefthand tail. By contrast a model

that passes an indirect inference test of specification will almost definitely

also improve on VAR forecasts.
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1 Introduction

In recent years macro-economists have turned to out-of-sample forecasting (OSF)

tests of Dynamic Stochastic General Equilibrium (DSGE) models as a way of

determining their value to policymakers both for deciding policy and for im-

proving forecasts. Thus for example Smets and Wouters (2007) showed that

their model of the US could beat a Bayesian Vector Auto Regression (VAR) or

BVAR, their point being that while they had estimated the model by Bayesian

methods with strong priors there was a need to show also that the model could

independently pass a (classical, specification) test of overall fit since otherwise

the priors could have dominated the model’s posterior probability. Further pa-

pers have documented models’OSF capacity, including Gürkaynak et al (2013)

and see also Wickens (2014) for a survey of recent attempts by central banks to

evaluate their own DSGE models’OSF capacity1 . But how good are these OSF

tests? This question is what this paper sets out to answer.

The value of DSGE models’OSF capacity to policymakers comes as we said

from two main sources.

The first is the desire to use DSGE models in forecasting as a way of improv-

ing forecasts. One can think of an unrestricted VAR as a method that uses data

to forecast without imposing any theory. Then if one knows the true theory

one can improve the effi ciency of these forecasts by imposing this theory on the

VAR, to obtain the restricted VAR. This will improve the forecasts, reducing

the Root Mean Square Error (RMSE) of forecasts at all horizons. However im-

posing a false parameter structure on the VAR may produce worse forecasts; the

further from the truth the parameters are the worse the forecasts. There will

be some ’cross-over point’along this falseness spectrum at which the forecasts

deteriorate compared with the unrestricted VAR.

The second reason is the desire to have a well-specified model that can

be used reliably in policy evaluation; clearly in assessing the effects of a new

policy the better-specified the model, the closer it will get to predicting the true

effects. The assessment of the DSGE model’s forecasting capacity is being used

by policymakers with this desire, as a means of evaluating the extent of the

model’s mis-specification.

Notice that the two reasons are linked by the need for the model to be as

1Other papers that have computed OSF performance of DSGE models relative to time-
series models include: Adolfson, Linde and Villani (2007), Edge and Gürkaynak (2010), Edge,
Kiley and Laforte (2010), Giacomini and Rossi (2010), and Del Negro and Schorfheide (2012).
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well-specified as possible. Thus for the DSGE model to give better forecasts

than the unrestricted VAR it needs to be not too far from the true model- ie

the right side of the cross-over point. It is harder for us to judge how close the

model needs to be to the truth for a policy evaluation: this will depend on how

robust the policy is to errors in its estimated effects- this will vary according to

the policy in question. But we can conclude that both reasons require us to be

confident about the model’s specification.

Thus evaluations of the DSGE model’s forecasting capacity, to be useful,

should provide us with a test of the model’s specification; and this indeed is

how these evaluations are presented to us. Typically the model’s forecasting

RMSE is compared with that of an unrestricted VAR, eg the ratio of the model’s

RMSE to that of the VAR; there is a distribution for this ratio for the sample

size involved and we can see how often the particular model’s forecasts give a

ratio in say the 5% tail, indicating model rejection. The asymptotic distribution

for this ratio (of two t-distributions) cannot be derived analytically but based

on numerical approximation we see below that it is a t-distribution.

The questions we ask in this paper are:

• what is the small sample distribution for this ratio for a model 1) if it is
true and 2) if it is marginally able to improve other forecasts?

• how much power do these OSF evaluations have, viewed as a test of a

DSGE model’s specification? In other words can we distinguish clearly

between the forecasting performance of a badly mis-specified model and

the true model.

• can we say anything about the relationship between a DSGE model’s

degree of mis-specification and its forecasting capacity? There is a large

literature on forecast success of different sorts of models- Clements and

Hendry (2005); Christoffel, Coenen and Warne (2011). We would like to

see how success is related to specification error.

We investigate these questions using Monte Carlo experiments for a model

of the DSGE type being evaluated here; we do so using sample sizes for the

out-of-sample forecasts that are of the same order as those used in these tests

and so rely not on the asymptotic but on the small sample distributions of the

models. In section 2 that follows we explain the OSF tests of a DSGE model. In

section 3 we set out the Monte Carlo experiments and show the power OSF tests

of a DSGE model’s specification. In section 4 we establish some links between a
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DSGE model’s specification error and its capacity to improve forecasts. Section

5 concludes.

2 DSGE models out-of-sample forecasting tests

2.1 DSGE model OSFs

A DSGE model (e.g. that of Smets and Wouters, 2007, henceforth SW)) has a

general form:

A0Etyt+1 = A1yt +B0zt (1)

zt+1 = Rzt + εt+1

where yt+1are endogenous variables and zt are shocks which may be represented

by the autoregressive process, εt+1 are exogenous variables (i.e. NID(0,Σ)).

The solution to a DSGE model can be represented by a restricted VAR:

xt+1 = Axht +Bεt+1 (2)

where xt+1 = (yt+1, zt+1,at+1)
′, at+1 are the auxiliary variables, xht are the state

variables. The coeffi cient A and B are full rank but restricted.

The coeffi cient A and B can be derived analytically (see Wickens, 2014).

Alternatively, if we input the parameter set Ω={A0, A1, B0, R} in dynare, then
coeffi cient A and B in (2) can be derived by the programme Dynare (Juilliard,

2001). OSFs are then derived straightforwardly from (2). Suppose the initial

forecast origin is m, then the OSFs are :

x̂m+1 = Axhm (3)

x̂m+2 = Ax̂hm+1

...

x̂m+l = Ax̂hm+l−1

where l = 1, 2, . . . h . x̂m+l denotes the l-step ahead forecast. We also create

False models whose parameters are altered from those of the True one in a

manner we explain below.
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2.2 VAR model OSFs

Consider the first order VAR

yt+1 = Ayt + εt+1 (4)

where εt is assumed to be NID(0,Σ). Suppose the initial forecast origin is m,

the OSFs are:

ŷm+1 = Âmym (5)

ŷm+2 = (Âm)2ym

...

ŷm+l = (Âm)lym

where Âm is OLS (or MLE) estimates of VAR coeffi cients, i.e. Âm = [y
′

mym]−1y′mym+1.

2.3 OSF tests

The root mean square error (RMSE) of a forecast is defined as:

RMSEj(l) =

√√√√ 1

T − l −m

T−l∑
m=M

(ym+l − ŷj,m+l)2 (6)

where ym+l is the true data, ŷj,m+l is its out of sample forecasts from model j;

M is the initial forecast origin. l = 1, 2, . . . h denotes the l-step ahead forecast.

We look at the 4-quarter-ahead (4Q) and 8-quarter-ahead (8Q) forecasts. T

is the sample size. j = 1, 2 denotes the two competing models, say M1 is the

DSGE model, M2 is the unrestricted VAR model. Then RMSEj(l) is the root

mean squared forecast error for the l-step-ahead forecast of model j.

The OSF test is carried out on the ratio of the RMSE of the DSGE model

to that of the VAR:

Ratio(l) =
RMSEDSGE(l)

RMSEV AR(l)
(7)
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3 The power of OSF tests

3.1 Monte Carlo experiments

We follow the basic procedures of Le et al (2011) to design the Monte Carlo ex-

periment. We take the model of Smets and Wouters (2007) for the US and adopt

their posterior modes for all parameters, including for error processes; the in-

novations are given their posterior standard errors with the normal distribution

(Table 1A&1B, SW (2007)).

We set the sample size (T ) at 200, and generate 1000 samples. We set the

initial forecast origin (M) at 133. The VAR/DGSE is initially estimated over

the first 133 samples. The models were then used to forecast the data series for

the next 67 periods, where the VAR was re-estimated every period (quarter).

We find the distribution of this for the relevant null hypothesis under our small

sample from our 1000 Monte Carlo samples. Our null hypothesis for the OSF

tests is 1) the True DSGE model and 2) (discussed in section 4) the False DSGE

model that marginally succeeds in improving the forecast.

We follow Le et al (2011) in specifying a False DSGE model. A False DSGE

model is chosen by changing the parameters (A0, A1, B0) in the true model by +

or —x% alternately where x is the degree of falseness. We then extract the model

residuals (zt) from the data, re-estimate the error process and get R̂. Le et al

(2011) consider two ways to extract the model residuals (Limited Information

estimation method (LIML) and Exact Method) and find their differences are

trivial. We use the Exact Method to estimate the model residuals and get R̂.2

Denoting the false parameters as ΩF={AF0 , AF1 , BF0 , R̂}, we could derive AF by
using the same approach in Dynare. The OSFs are calculated as in (3),except

that we use AF rather than A. The RMSE ratio of the False DSGE model is:

RMSEFDSGE(l) =

√√√√ 1

T − l −m

T−l∑
m=M

(ym+l − ŷFDSGE,m+l)2 (8)

where ŷFDSGE,m+l is the OSF from the False DSGE model. The RMSE of VAR

model remains the same. Then we can obtain the ratio test statistic for each

sample.

Ratio(l) =
RMSEFDSGE(l)

RMSEV AR(l)
(9)

2We only reestimate the errors for a given False model (for each overlapping sample). If
we reestimated the whole False model each period, it would have variable falseness.
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The power of the test is the probability of rejecting a hypothesis when it is

false. In our OSF test, the power of the ratio test is the probability that the

Ratio > the 5% critical value for the True distribution.

3.2 Asymptotic versus small sample distributions

We begin with a discussion of how the distribution for our typical 200-size

sample differs from the asymptotic. In the absence of an analytical expression

for the asymptotic distribution we use a sample of 1000 as a proxy (as can be

seen from Figure 3 it is close to the t∞ distribution). Figures 1 and 2 show that

the 5% critical value differs by more than 10% between the two for the case

shown here of the 4Q forecast which is typical.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.1

0.2

0.3

0.4

0.5
Histogram of Ratio statistic: GDP 4Q OSF,T=200

Histogram
5% critical point

0.8 0.85 0.9 0.95 1 1.05
0

0.1

0.2

0.3

0.4
Histogram of Ratio statistic: GDP 4Q OSF,T=1000

Histogram
5% critical point

Figure 1: Asymptotic versus small sample distributions
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We then normalise the ratio statistics by adjusting its mean and standard

deviation. This is plotted agaist a normal distribution in figure 3. It can be

observed that the large sample distribution is very close to a normal distribution.

The 5% critical value for the normalized large sample ratio is 1.543, which is

close to 5% critical value from the standard normal distribution (1.645).

In what follows all the distributions are based on Monte Carlo results for

T = 200. For the sake of brevity we focus solely on the 5% confidence level test.

­3 ­2 ­1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Normalised Histogram
SD normal distribution
5% critical point

Figure 2: Normalized ratio statistics and standard normal distribution

3.3 Power of the specification test at 5% nominal value

The Power of the OSF tests at a 5% nominal value are reported in table 1.

The first three sets of results are for each variable viewed alone. The last set

relates to the joint forecast performance; for this we use the square root of the

determinant of the joint forecast-error-covariance matrix (also used to measure

the joint error in SW 2007)3 . See appendix for the small sample distribution

and the 5% critical value associated with the OSF tests in table 1.
3 It is defined as follows. Let fy , fπ , fr be the OSF errors of output growth, inflation and

interest rate respectively. Denote f = (fy , fπ , fr)’. Then f is a (T − l −m) ∗ 3 matrix. We
can calculate the covariance of f.The joint RMSE is defined as

√
|cov(f)|.
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GDP growth Inflation Interest rate Joint 3
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q
True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 True 5.0 5.0
1 10.2 5.0 1 5.8 4.7 1 4.7 4.8 1 6.0 4.9
3 23.2 5.0 3 7.9 4.8 3 6.5 4.2 3 9.4 5.2
5 34.9 5.2 5 13.4 5.1 5 11.5 4.2 5 15.3 6.0
7 42.5 5.1 7 21.3 6.9 7 18.9 5.4 7 22.9 6.6
10 52.3 5.5 10 35.6 10.7 10 30.3 6.5 10 36.2 9.8
15 58.0 11.0 15 62.7 23.7 15 48.9 11.9 15 73.8 29.5
20 49.9 60.5 20 97.8 72.4 20 62.7 21.3 20 99.8 90.7

Table 1: Power of OSF test

These results are obtained with stationary errors and with a VAR(1) as the

benchmark model. We redid the analysis under the assumption that productiv-

ity was non-stationary. The results were very similar to those above. We further

looked at a case of much lower forecastability, where we reduced the AR para-

meters of the error processes to a minimal 0.05 (on the grounds that persistence

in data can be exploited by forecasters). Again the results were very similar,

perhaps surprisingly. It seems that while absolute forecasting ability of a model,

whether it be DSGE or VAR, is indeed reduced by lesser forecastability, relative

forecasting ability is rather robust to data forecastability. Finally, we redid the

original analysis using a VAR(2) as the benchmark; this also produced similar

results tothose above. All these variants, designed to check the robustness of

our results, are to be found in Appendix 2.

What we see from the Tables above is that the power is weak. On a 1-

year-ahead forecast, 4Q, the rejection rate of the DSGE model on its joint joint

performance remains low at the one year horizon until the model reaches 20%

falseness, and at the two year horizon does not get above 40% even when the

model is 20% false.

To put this RMSE test in perspective consider the power of the indirect

inference Wald test, in sample using a VAR(1) on the same three variables (GDP,

inflation and interest rates)- taken from Le et al (2012) which also describes in

full the procedures for obtaining the test, based on checking how far the DSGE

model can generate on simulated data the data features found in the actual data

sample.
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% Misspecified Wald in-sample II Joint 3:4Q :8Q
True 5.0 5.0 5.0
1 19.8 6.0 4.9
3 52.1 9.4 5.2
5 87.3 15.3 6.0
7 99.4 22.9 6.6
10 100.0 36.2 9.8
15 100.0 73.8 29.5
20 100.0 99.8 90.7

Table 2: Rejection Rates for Wald and Likelihood Ratio for 3 Variable VAR(1)

We see that the in-sample Wald II test has far more power. Why may

this be the case? In forecasting, DSGE models use fitted errors and when the

model is mis-specified this creates larger errors which absorb the model’s mis-

specification; these new errors are projected into the future and could to some

degree compensate for the poorer performance by the mis-specified parameters.

To put this another way, as the DSGE model produces larger errors, reducing

the relative input from the structural model proper, these larger errors take on

some of the character of an unrestricted VAR. By contrast in indirect inference

false errors compound the model’s inability to generate the same data features

as the actual data.

3.4 The connection between mis-specification and forecast
improvement

For our small samples here we find that the cross-over point at which the DSGE

model forecasts 1 year ahead less well on average than the unrestricted VAR

is for output growth 1% false, for inflation and interest rates 7% false; for the

three variables together it is also 7%. This reveals that the lower the power of

the forecasting test for a variable the more useful are False models in improving

unrestricted VAR forecasts. Thus for output growth where power is higher, the

DSGE model needs to be less than 1% false to improve the forecast; yet for

inflation and interest rates where the power is very weak a model needs only to

be less than 7% false to improve the forecast. This is illustrated below in the

two charts. In the lower one the false distribution with a mean RMSE ratio of

unity (where the DSGE model is on average only as accurate as the unrestricted

VAR) is 7% false; hence any model less false than this will have a distribution

with a mean ratio of less than unity- and will therefore on average improve the
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forecast. In the upper one the false distribution with a mean RMSE ratio of

unity is only 1% false; so to improve output growth forecasts you need a model

that is less than 1% false. Essentially what is happening with weak power is that

as the model becomes more false its RMSE ratio distribution moves little to the

right, with the OSF performance deteriorating little; this, as we have pointed

out, may be because as the model parameters worsen, the error parameters

offset some of this worsening.

1 1.15 RMSE Ratio (y)

P
D

F

1% False ModelTrue Model

Rejection When
1% False

1 1.23 RMSE Ratio ( π)

P
D

F

True Model

Rejection When
7% False

7% False Model

Figure 3: The connection between mis-specification and forecast improvement

What this shows is that if all a policymaker cares about is improving forecasts

and the power of the forecast test is weak, then a poorly specified model may
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still suffi ce for improvement and will be worth using. This could well account

for the willingness of central banks to use DSGE models in forecasting in spite

of the evidence from other tests that they are mis-specified and so unreliable for

policymaking. We now turn to how central banks can check on the forecasting

capacity of their DSGE models using OSF tests.

4 OSF tests of whether a DSGEmodel improves

forecasts

We now consider how policymakers could assure themselves of the forecasting

capacity of their DSGE model. Here they set up the marginal forecast-failure

model as the null hypothesis, shown as the red distribution in the figures above.

This is the structure of the Diebold-Mariano (1995) test widely used to test

the forecast accuracy of models. Notice that policymakers can either look at

the right hand tail, which tests the null against the alternative that the model

forecasts worse; if they use this test they are assuming in the event of non-

rejection that the model forecasts just better- the benefit of the doubt goes to the

model. Or they can look at the left hand tail which tests against the alternative

that the model forecasts better; if they use this test they are assuming in the

event of non-rejection that the model is not worth using- the benefit of the doubt

goes to the VAR forecast. If they obtain a result in the left hand tail, then they

can be sure, at least with 95% confidence, that the model will improve forecasts.

If they obtain a result in the right hand tail, then again they can be sure, at lest

with 95% confidence, that the model will worsen forecasts. We need to check

the power of each tail: how fast rejection rises on the RH tail as models get

worse and on the LH tails how fast it rises as models get better. The situation

is illustrated in figure 4.
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1 Joint RMSE Ratio

PD
F

1% False model
(better model)

15% False model
(worse model)

7% False model
(marginal model)

LHT
5%

RHT
5%

Rejection of worse
model

(Power of RHT)

Rejection of better
model

(Power of LHT)

Figure 4: Illustration of LH and RH tails

4.1 Power of LH and Right Hand tails

Table 3 shows for the joint-3 case (the results for individual variables are re-

ported in the appendix) the power of the Left Hand and Right Hand tails as

just discussed. Thus for the LH tail we show the chances of less False models

being rejected, while for the RH tail we show the chances of more False models

being rejected.
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Joint (Det)- RHTail Joint (Det) -LHTail
% F 4Q 8Q % F 4Q 8Q
True True 16.7 18.8
1 1 14.2 17.4
3 3 9.8 14.8
5 5 7.2 12.9
7 5.0 7 5.0 11.3
10 11.3 10 9.4
15 46.8 5.0 15 5.0
20 99.5 70.5 20
25 100 100 25
30 100 100 30
35 100 100 35
40 100 100 40

Table 3: Power of OSF tests: LHT and RHT.

The main problem with these tests remains that of poor power.

On the one hand, policymakers could use a DSGE model that was poor at

forecasting without detection by the RH tail test. Thus for example a model

that was 3% more false than the marginal one would only be rejected on the

crucial 4Q-ahead test 11.3% of the time on the RH tail.

On the other hand, they could refuse to use a DSGE model that was good

at forecasting without detection; for example a model that was 4% less False

than the marginal one would only be rejected on the 4Q-ahead test by the LH

tail 9.8% of the time.

We can design a more powerful test by going back to Table 2 and using

simply the right hand tail as a test of specification. What is needed is a test of

the DSGE model’s specification (as true) that has power against a model that is

so badly specified that it would marginally worsen forecasting performance on

the joint 3 variables- the marginal forecast-failure model: as we have seen such

a model is at the 4Q horizon 7% false and at the 8Q horizon 15% false. Now

the power of OSF specification tests against such a bad model is larger: Table 2

above shows that if on an OSF 4Q test at 95% confidence a model is not rejected

(as true), then the marginal forecast-failure model (the 7% false model) has a

22.9% chance of rejection. On an 8Q test the equivalent model (15% false) has

a 29.5% chance of rejection. Thus the OSF test has better power against the

marginal forecast-failure model; but it is still quite weak.

Policymakers could however use the II in-sample test of whether the model

is true also shown in that Table. Against the 4Q 7% false model it has power of
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99.4%, and against the 8Q 15% false model power of 100%. Thus if policymakers

could find a DSGE model that was not rejected by the II test, then they could

have complete confidence that it could not worsen forecasts.

If no DSGE model can be found that fails to be rejected, then this strategy

would not work and one must use the Diebold-Mariano test faute de mieux, on

whatever DSGE model comes closest to passing the II specification test.

4.2 Reviewing the evidence of OSF tests

In this subsection we review some of the available OSF tests of DSGE models

against time-series alternatives and see how we could interpret them in the light

of these Monte Carlo experiments. Our aim is not to go through all such tests

but merely to illustrate from some prominent ones how one might interpret the

available evidence; we choose in particular those of SW(2007) and Gürkaynak

et al (2013) for the SW (2007) model of the US on which our Monte Carlo

experiment is also focused.

RMSE: 4Q 8Q 4Q 8Q
Gürkaynak et al (2013) VAR RW

π 0.92 0.73 1.20 1.19
∆y 0.68 0.63 0.70 0.69
R 0.99 0.89 1.02 0.99

SW (2007) VAR
π 0.54 0.32
y 0.80 0.77
R 0.98 0.72

Joint 0.80 0.66

Table 4: DSGE/Time-series RMSE ratio for SW real-time data. Source:
Gurkaynak et al, 2013, SW post-war model- for 1992-2007 as OSF period. NB
they report the inverse of these ratios. Smets and Wouters(2007),SW model-
for 1990-2004 as OSF period. NB they report the percentage gains relative to
VAR(1) model; we convert these to RMSE ratios.

If we first consider the forecasting performance of these DSGE models, what

we see from this summary table is that the RMSE ratio of DSGE models relative

to different time-series forecasting methods varies from better to worse according

to which variable and which time-series benchmark is considered: Gürkaynak

et al (2013) note that there is a wide variety of relative RMSE performance.

Wickens (2014) who reviews a wide range of country/variable forecasts finds
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the same. No joint performance measures are reported in these papers; however

SW (2007)’s joint ratio comes out at 0.8 against a VAR(1) 4Q-ahead and 0.66

8Q-ahead.4 Thus on these joint ratios the LH tail rejects the marginal forecast-

failure model, strong evidence that the SW model forecasts better than a VAR1.

If we turn now to consider DSGE models’specification from these results,

we see first that that in general they do not reject these DSGE models. But

because of the low power of the OSF tests, the same would be true with rather

high probability of quite false models. Le et al (2011) show that the SW model

is strongly rejected by the II Wald test, which is consistent with these OSF

results, since as we have seen a false DSGE model may still forecast better than

a VAR. They went on to find a version of the model, allowing for the existence

of a competititve sector, that was not rejected for the Great Moderation period.

By the arguments of this paper this model must also improve on time-series

forecasts.

5 Conclusions

OSF tests are now regularly carried out on DSGE models against time-series

benchmarks such as the VAR1 used here as typical. These tests aim to discover

how good DSGE models are in terms of a) specification b) forecasting perfor-

mance. Our aim in this paper has been to discover how well these tests achieve

these aims.

We have carried out a Monte Carlo experiment on a DSGE model of the type

commonly used in central banks for forecasting purposes and on which out-of-

sample (OSF) tests have been conducted. In this experiment we generated

the small sample distribution of these tests and also their power as a test of

specification; we found that the power of the tests for this purpose was extremely

low. Thus when we apply these results to the reported tests of existing DSGE

models we find that none of them are rejected on a 5% test; but the lack of power

means that models that were substantially false would have a very high chance

also of not being rejected. Researchers could therefore have little confidence in

4SW (2007)calculate the overall percentage gain of the joint OSF as (log(|cov(fV AR)|) −
log(|cov(fDSG)|)/(2k), where k is the number of variables (here=3). They give a
6.8% improvement 4Q-ahead and and 11.1% improvement 8Q-ahead. We convert this
to ratio as follows: (log(|cov(fV AR)|) − log(|cov(fDSG)|))/(2k) = −(log

√
|cov(fDSG)| −

log
√
|cov(fV AR)|)/k ≈ −

√
|cov(fDSG)|−

√
|cov(fVAR)|

k
√
|cov(fVAR)|

= −JRMSEDSG−JRMSEVAR
k∗JRMSEVAR

=

(−JointRatio+ 1)/k
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these tests for this purpose. We show that they would be better off using an

in-sample indirect inference test of specification which has substantial power.

The reason for this relative weakness of OSF tests on DSGE models may

be that the model errors, which are increased by the model mis-specification,

nevertheless when projected forward compensate for the poorer forecast of the

structural parameters. It follows that weak power implies that a DSGE model

may be badly mis-specified and yet still forecast well. Thus a corollary of the

low power is that DSGE models can still improve forecasts even when badly

misspecified.

Viewed as tests of forecasting performance against the null of doing exactly

as well as the VAR benchmark, OSF tests of DSGE models are used widely,

with both the left hand tail of the distribution testing for significantly better

performance and the right hand tail for significantly worse performance. Power

is again rather weak, particularly on the left hand tail. An alternative would

again be to use an in-sample indirect inference test of specification; if a DSGE

model specification can be found that passes such a test, then it may not only

be fit for policy analysis but will also almost definitely improve VAR forecasts.
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6 Appendix

6.1 Small sample distribution and 5% critical values of
OSF tests
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Figure 5: Histogram distribution of ratio statistics: T=200
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4Q 8Q
GDP growth 1.0844 1.0889
Inflation 1.0693 1.1257
Interest rate 1.0662 1.1107
Joint 3 variables 1.0922 1.0879

Table 5: Critical value at 5 percent level

6.2 Experiments with alternative error processes

a) productivity shock follows an I(1) process

GDP growth Inflation Interest rate Joint 3 variables
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q
True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 True 5.0 5.0

1 10.4 5.3 1 5.9 5.1 1 4.8 5.3 1 6.6 5.2
3 21.5 5.8 3 8.5 5.7 3 5.9 5.2 3 10.1 5.4
5 31.9 5.9 5 14.6 6.8 5 10.7 4.8 5 12.8 5.2
7 39.6 5.8 7 21.2 7.5 7 16.9 5.5 7 13.6 5.0
10 47.2 6.6 10 35.4 11.2 10 28.3 7.1 10 13.7 6.2
15 52.1 12.4 15 62.8 24.7 15 43.4 12.7 15 18.7 10.0
20 44.0 58.5 20 97.5 72.2 20 57.5 22.3 20 69.6 38.2

Table 6: Power of OSF test

There is essentially no difference in the power of the test as productivity

becomes I(1), thereby also making output I(1) (though leaving inflation and

interest rates stationary). The change makes output growth positively instead

of negatively autocorrelated and so may well make little difference to how easy

it is to forecast.

b) altering the forecastability of the economy
One might think that the power of the test would be affected by ease of

forecasting the economy. We look at this issue by reducing the AR coeffi cients

of the error processes to 0.05 from their SW values.
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GDP growth Inflation Interest rate Joint 3 variables
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q
True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 True 5.0 5.0
1 5.4 3.7 1 5.3 5.9 1 4.2 3.8 1 5.1 5.0
3 5.6 3.3 3 6.3 8.7 3 3.4 2.8 3 6.3 6.6
5 5.4 3.6 5 8.9 11.2 5 5.4 3.3 5 10.0 10.1
7 5.1 5.9 7 14.9 16.1 7 8.0 3.9 7 17.4 15.8
10 4.8 14.8 10 31.8 31.0 10 13.6 6.3 10 37.0 31.9
15 5.4 46.0 15 88.6 73.0 15 30.2 20.3 15 88.0 76.6
20 10.2 93.3 20 100 100 20 56.7 50.6 20 100 100

Table 7: Power of OSF test

What we see the power that is not dissimilar to that in our original Table.

c) altering the benchmark model
One might be concerned that the power of the test would be affected by

using high order VARs. So we choose VAR(2) as benchmark model and redo

the power of the test. The results are reported in the table below.

GDP growth Inflation Interest rate Joint 3 variables
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q
True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 True 5.0 5.0
1 5.7 4.5 1 5.1 5.1 1 4.9 4.7 1 5.6 5.2
3 9.7 4.2 3 5.6 5.1 3 5.7 4.5 3 5.6 5.3
5 14.8 4.4 5 6.9 5.8 5 7.4 4.5 5 6.4 5.4
7 18.2 4.8 7 8.5 6.1 7 9.9 5.1 7 7.5 5.2
10 22.7 5.2 10 13.1 8.0 10 12.1 5.5 10 10.6 6.4
15 24.7 7.5 15 27.9 13.9 15 16.2 8.1 15 24.7 8.7
20 20.5 38.5 20 69.0 45.3 20 22.2 12.6 20 87.0 42.5

Table 8: Power of OSF test

With VAR(2) as the benchmark model, the OSF tests have similarly low

power. The AR(2) coeffi cients are mostly insignificant; including high order

terms worsens the VAR’s forecast capacity. This is also consistent with other

literature (e.g. SW 2007, Wickens 2014) in which a VAR(1) is often chosen as

the benchmark model.

6.3 OSF tests of whether a DSGE model improves fore-
casts for individual variables

RHTail
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GDP growth Inflation Interest rate Joint (Det)
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q
True True True True
1 5.0 1 1 1
3 14.6 3 3 3
5 22.7 5 5 5
7 29.7 7 5.0 7 5.0 7 5.0
10 38.5 10 12.3 5.0 10 12.9 10 11.3
15 44.1 5.0 15 38.8 13.1 15 26.3 15 46.8 5.0
20 32.5 49.2 20 91.4 60.3 20 39.9 5.0 20 99.5 70.5
25 100 100 25 100 100 25 60.9 12.8 25 100 100
30 100 100 30 100 100 30 65.7 15.4 30 100 100
35 100 100 35 100 100 35 71.8 20.4 35 100 100
40 100 100 40 100 100 40 76.6 26.7 40 100 100

Table 9: Power of OSF test: RHT

LHTail

GDP growth Inflation Interest rate Joint (Det)
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q
True 6.3 8.7 True 10.9 8.5 True 14.0 20.5 True 16.7 18.8
1 5.0 7.2 1 9.8 8.3 1 11.5 20.4 1 14.2 17.4
3 6.6 3 7.1 7.7 3 8.5 18.7 3 9.8 14.8
5 6.1 5 5.7 6.7 5 6.3 16.2 5 7.2 12.9
7 5.7 7 5.0 5.6 7 5.0 14.3 7 5.0 11.3
10 5.3 10 5.0 10 10.9 10 9.4
15 5.0 15 15 7.4 15 5.0
20 20 20 5.0 20
25 25 25 25
30 30 30 30
35 35 35 35
40 40 40 40

Table 10: Power of OSF test: LHT
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